# Etude cristallochimique du molybdate et du tungstate d'américium(III): $\alpha$ -Am<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>, $\alpha$ -Am<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub>

# ALAIN TABUTEAU ET MONIQUE PAGÈS

Institut du Radium-Laboratoire Curie, 11, rue Pierre et Marie Curie, 75231, Paris Cedex 05, France

Received January 3, 1978; in revised form March 13, 1978

The lattice parameters and crystal structures of  $\alpha$ -Am<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub> and  $\alpha$ -Am<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub> were studied by means of X-ray powder diffraction. Their structures derive from the scheelite (CaWO<sub>4</sub>) type in which one-third of the original 8-coordinated Ca sites are replaced by ordered vacancies. In the monoclinic  $\alpha$ -Am<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub> the ordering of Am atoms and vacancies is less complex than in the pseudotetragonal  $\alpha$ -Am<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>, but the AmO<sub>8</sub> polyhedra and WO<sub>4</sub> tetrahedra are much more distorted.

L'étude cristallochimique des phases basse température du molybdate et du tungstate d'américium trivalent a permis de mettre en évidence deux composés lacunaires; l'arrangement ordonné des lacunes conduit à des surstructures. Le molybdate peut être décrit avec une bonne approximation comme ayant une maille de type scheelite. Le tungstate présente la structure de  $\alpha$ -Eu<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub> dérivée également de CaWO<sub>4</sub>.

La mise en évidence de propriétés ferroélectriques (1, 2) et ferroélastiques de  $Gd_2(MoO_4)_3$  (3) et la fluorescence présentée par certains tungstates sont à l'origine des nombreux travaux relatifs aux molybdates et tungstates de lanthanides de composition  $Ln_2(XO_4)_3$ .

Les caractères structuraux de ces composés et leur évolution en fonction de la température et du rayon ionique de l'élément trivalent ont été largement décrits (4, 5).

Dans le cas des premiers lanthanides, les composés  $Ln_2(XO_4)_3$ , présentent des structures octocoordonnées, de type scheelite ou apparentées à ce type structural. Ils peuvent être considérés comme des scheelites lacunaires bien qu'appartenant à des groupes structuraux différents selon l'arrangement des cations et des lacunes et les distorsions qui en résultent pour le réseau cristallin.

Il était intéressant d'étudier les composés analogues de l'américium trivalent dont le rayon ionique (1,115 Å en coordinence VI) est proche de ceux de  $Pr^{3+}$  (1,13 Å),  $Nd^{3+}$  (1,123 Å) et  $Pm^{3+}$  (1,11 Å) (6).

Une étude antérieure (7) nous avait permis d'identifier un molybdate d'américium(III) quadratique de type scheelite. Ces premiers résultats, obtenus à l'aide d'une chambre Guinier-de Wolff, restaient incomplets puisque cette technique de diffraction X ne permet pas l'observation des raies de faible intensité dans le cas des composés d'américium-241 (le rayonnement  $\gamma$  provoquant un noircissement important des films).

Nous avons repris l'étude cristallochimique des phases basse température du molybdate et du tungstate d'américium(III), sur des échantillons polycristallins mais à l'aide d'une technique de diffraction mieux adaptée. Les formes haute température ( $\beta$ ) mises en évidence pour ces composés n'ont pas encore fait l'objet d'une étude structurale approfondie.

## **Conditions** experimentales

Toutes les manipulations sont effectuées en enceintes étanches sous dépression: l'isotope utilisé, <sup>241</sup>Am, est un émetteur  $\alpha$  (5,47 MeV), d'activité spécifique élevée, pour lequel une émission  $\gamma$  de 0,059 MeV est associée à la désintégration a

Les molybdate et tungstate d'américium(III) sont préparés en quantité de l'ordre de 1 à 5 mg par chauffage à l'air, en microcreusets  $(6 \mu l)$  de platine sertis, de mélanges d'oxydes  $AmO_2$  et  $MoO_3$  (ou  $WO_3$ ) en proportions stoechiométriques. Les produits de réaction sont préalablement homogénéisés par broyage. Dans le cas du tungstate, la réaction n'est complète qu'après des recuits prolongés (1080°C) entrecoupés de broyages.

Les spectres de diffraction X sont obtenus à l'aide d'un diffractometre Philips. Le compteur proportionnel est protégé des rayonnements parasites provenant de l'enceinte radioactive par un verre au plomb.

Les diffractogrammes sont réalisés à 25°C sur des quantités de poudre de l'ordre du milligramme, finement pulvérisée et répartie d'une manière homogène sur toute la surface irradiée. On utilise la radiation Cu  $K\alpha$  et un étalon interne.

## TABLEAU II

Coordonnées atomiques utilisées (8) pour le CALCUL DES INTENSITÉS DU DIAGRAMME DEBYE-SCHERRER DE  $\alpha$ -Am<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub> DANS LE GROUPE D'ESPACE  $I4_1/a$ 

| Atome  | Site        | x     | у     | Z     |
|--------|-------------|-------|-------|-------|
| 2/3 Am | 4 b         | 0     | 0,25  | 0,625 |
| Мо     | 4 a         | 0     | 0,25  | 0,125 |
| 0      | 16 <i>f</i> | 0,145 | 0,004 | 0,208 |

#### Phase basse témperature du molybdate d'americium(III)

Le diagramme de poudre  $\alpha$ -Am<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub> (Tableau I) peut être indexé selon une maille élémentaire quadratique type scheelite avec les paramètres: a = 5,247 Å, c = 11,542 Å.

Si l'on suppose que les atomes Am, Mo, O occupent les positions données dans le Tableau II (correspondant à celles de Nd, Mo, O dans a-Nd<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub> (8), on obtient une bonne correspondance entre intensités observées et calculées puisque le facteur de confiance R est de 0,11.

Une façon simple de décrire cette structure est de la représenter comme une scheelite lacunaire  $(Am_{2/3}^{3+}\Box_{1/3})MoO_4$ , ce qui fait bien

| TYPE SCHEELITE <sup>+</sup> |                  |       |                  |                  |                  |                  |       |                  |                  |
|-----------------------------|------------------|-------|------------------|------------------|------------------|------------------|-------|------------------|------------------|
| d <sub>obs</sub>            | d <sub>cal</sub> | h k l | I <sub>obs</sub> | I <sub>cai</sub> | d <sub>obs</sub> | d <sub>cai</sub> | h k l | I <sub>obs</sub> | I <sub>cal</sub> |
| 5,77                        |                  | +     | 4                |                  |                  | 2,113            | 105   |                  | 2                |
| 5,29                        |                  | +     | 3                |                  | 2,004            | 2,003            | 213   | 3                | 5                |
| 5,21                        |                  | +     | 3                |                  | 1,941            | 1,941            | 204   | 36               | 29               |
| 4,77                        | 4,78             | 101   | 7                | 6                | 1,899            |                  | +     | 4                |                  |
| 3,782                       |                  | +     | 1                |                  | 1,855            | 1,855            | 220   | 10               | 12               |
| 3,616                       |                  | +     | 2                |                  | 1,708            | 1,708            | 116   | 20               | 16               |
| 3,405                       |                  | +     | 1                |                  | 1,638            |                  | +     | 2                |                  |
| 3,293                       |                  | +     | 1                |                  | 1,595            | 1,595            | 312   | 26               | 30               |
| 3,119                       | 3,121            | 112   | 100              | 100              | 1,561            | 1,560            | 224   | 11               | 12               |
| 3,015                       | •                | +     | 2                |                  |                  | 1,443            | 008   |                  | 2                |
| 2,883                       | 2,886            | 004   | 19               | 15               | 1,264            | 1,264            | 208   | 5                | 8                |

1,257

1,256

316

10

11

TABLEAU I

DIAGRAMME DE POUDRE DE  $\sigma$ -Am<sub>2</sub>(MOO<sub>4</sub>)<sub>3</sub> indexé sur la base d'une maille quadratique de

+ Réflexions non indexables dans le sous-réseau scheelite.

22

1

21

<1

200

211

2,620

2,298

2,624

2,300

| TABLEAU III DIAGRAMME DE DIFFRACTION DE & $\mathrm{Am}_2(\mathrm{WO}_4)_3$ |  |
|----------------------------------------------------------------------------|--|
|----------------------------------------------------------------------------|--|

I cal

| $I_{\rm obs}$      | 15                                                     | 10                           | 3                                                                                             | 20<br>12              | 15<br>25                       | 14                                        |
|--------------------|--------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------|-----------------------|--------------------------------|-------------------------------------------|
| $d_{\rm cal}$      | 1,884<br>1,884                                         | 1,806<br>1,806<br>1,805      | 1,737<br>1,737<br>1,737<br>1,736                                                              | 1,728<br>1,712        | 1,704                          | 1,608                                     |
| $d_{\rm obs}$      | 1,883                                                  | 1,807                        | 1,736                                                                                         | 1,729<br>1,711        | 1,704<br>1,634                 | 1,609                                     |
| h k l              | $\begin{bmatrix} 1 & 1 & 5 \\ 1 & 1 & 6 \end{bmatrix}$ | 423<br>006<br>153            | 154<br>420<br>424<br>045                                                                      | 26Î<br>135<br>135     | 130<br>063<br>421<br>421       | 4 2 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 |
| $I_{\rm cal}$      | - 7                                                    | € € <del>Γ</del>             |                                                                                               | ., v .<br>1 ∧         | 53 4 0                         | 15                                        |
| $I_{\rm obs}$      | - 2                                                    | ٢                            | 2 2                                                                                           | <b>1</b> 6            | 10<br>50                       | 20                                        |
| $d_{\rm cal}$      | 2,256<br>2,209                                         | 2,176<br>2,176<br>2,134]     | 2,134_<br>2,132_<br>2,132_<br>2,132_<br>2,123                                                 | 2,056<br>2,030        | 1,977<br>1,977<br>1,952        | 1,933<br>1,933                            |
| $d_{ m obs}$       | 2,257<br>2,210                                         | 2,177                        | 2,132<br>2,123                                                                                | <b>2,054</b><br>2,030 | 1,975<br>1,951                 | 1,935                                     |
| h k l              | 115<br>151                                             | · 3 1 1]<br>3 1 4]<br>3 3 1] | $332 \ 241 \ 243 \ 151 \ 151$                                                                 | 333<br>025<br>• 521   | 1 5 3 ]<br>2 4 2 ]             | 444<br>402                                |
| $I_{\rm cal}$      | 31<br>1                                                | ° √ √                        | 4 0 0 <u>1</u>                                                                                | 91<br>9               |                                | 3 - v                                     |
| $I_{\rm obs}$      | 35<br>1                                                | 10 S                         | 34 14                                                                                         | 4                     | 1 7                            | Ś                                         |
| $d_{\mathrm{cal}}$ | 2,898<br>2,800                                         | 2,790]<br>2,790]<br>2,766]   | 2,766]<br>2,703<br>2,703<br>2,640                                                             | 2,640 ]<br>2,556      | 2,499<br>2,499<br>2,306        | 2,268<br>2,268<br>2,268                   |
| $d_{ m obs}$       | 2,900<br>2,800                                         | 2,792                        | 2,704                                                                                         | 2,556                 | 2,493<br>2,306                 | 2,264                                     |
| h k l              | 040<br>041                                             | 113]<br>114]<br>221]         | $\begin{bmatrix} 2 & 2.3 \\ 1 & 3 & 2 \\ 1 & 3 & 3 \end{bmatrix}$                             | 204]<br>042           | 3 1 2<br>3 1 2<br>1 3 3<br>1 2 | 240<br>240<br>242                         |
| $I_{\rm cal}$      | 4 11                                                   | 11 22<br>11                  | °                                                                                             | 15                    | ci 2 - š                       | 8 <sup>1</sup> 1                          |
| $I_{\mathrm{obs}}$ | 15                                                     | 3<br>15<br>10                | 4 0 9                                                                                         | 32                    | 600.                           | 85 4 4                                    |
| $d_{\rm cal}$      | 6,167<br>6,167                                         | 5,797<br>5,419<br>5,111      | 4,805  <br>4,805  <br>3,959<br>3,642 ]                                                        | 3,642 ]<br>3,595 ]    | 3,414                          | 3,118<br>3,118<br>3,066                   |
| $d_{\rm obs}$      | 6,175                                                  | 5,905<br>5,423<br>5,118      | 4,802<br>3,960<br>3.654                                                                       | 3,600                 | 3,416                          | 3,121<br>3,121<br>3,067                   |
| 1 7 4              | 110<br>111                                             | 020<br>002<br>021            | $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \\ 0 & 2 & 2 \\ 2 & 0 & 0 \end{bmatrix}$ | 202<br>112            |                                | 221<br>131<br>023                         |

apparaître la filiation avec  $AXO_4$  où A est normalement un élément bivalent.

Le molybdate d'américium serait donc structuralement analogue aux molybdates de La (9), Ce, Pr, Nd (10, 11) et Pm (12) de structure dite "pseudo-scheelite".

L'existence de quelques raies de très faibles intensités, interdites dans le groupe d'espace  $I4_1/a$  de la scheelite, exclue l'hypothèse d'une maille simple pour  $\alpha \cdot Am_2(MoO_4)_3$ . Sa description selon une maille monoclinique, avec les paramètres a = 16,58 Å, b = 11,542 Å, c =15,73 Å et  $\beta \sim 108,4^\circ$ , par analogie avec  $La_2(MoO_4)_3$  (9) ne permet pas d'indexer la totalité des raies faibles.

L'ordonnancement des lacunes serait donc particulier dans le cas du molybdate d'américium trivalent.

## Phase basse température du tungstate d'américium(III)

Le diagramme de diffraction X de a-Am<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub>, très riche en raies (Tableau III) a pu être indexé dans le système monoclinique avec les paramètres suivants: a = 7,733 Å, b =11,593 Å, c = 11,507 Å,  $\beta = 109,63^{\circ}$ .

TABLEAU IV

| Paramètf | ES DE  | æAm <sub>2</sub> (W | O4), P( | OUR  | LES | DIFFÉRENT | ΈS |
|----------|--------|---------------------|---------|------|-----|-----------|----|
| 1        | MAILLE | S ÉLÉMENT           | AIRES   | ENVI | SAG | ÉES       |    |

| Paramètre           | Monoclinique<br>gpe d'espace<br>C2/c | Pseudo<br>scheelite | Pseudo<br>orthorhombique |
|---------------------|--------------------------------------|---------------------|--------------------------|
| a(Å)                | 7,733                                | 5,29                | 7,733                    |
| b (Å)               | 11,593                               |                     | 11,593                   |
| c (Å)               | 11,507                               | 11,593              | 21,67                    |
| β(°)                | 109,63                               |                     |                          |
| y (°)               |                                      | 93,9                |                          |
| v (Å <sup>3</sup> ) | 971,63                               | 323,67              | 1942,7                   |

Le tungstate d'américium basse température est isotype des phases basse température des tungstates d'yttrium et de lanthanides (La  $\rightarrow$ Ho) (13, 14) dont la structure type est celle de  $\alpha$ -Eu<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub> monoclinique, groupe d'espace C2/c (15).

Bien que monocliniques, ces tungstates sont fréquemment indexés sur la base d'une maille pseudo-orthorhombique (Tableau IV) ce qui est incompatible avec l'hypothèse d'une structure dérivant de la scheelite  $(I4_1/a)$ ; par contre, il existe bien un sous-groupe C2/c de la scheelite.



FIG. 1. Relation entre la vraie maille monoclinique et les autres sous-mailles possibles de  $\alpha \operatorname{Am}_2(WO_4)_3$ .  $a_{mon} = a_{onth}; b_{mon} = b_{onth} = c_{sch}$ 

| Ref.                      | Composé                                                    | a (Å) | b (Å)  | c (Å)  | β(°)   | v (Å <sup>3</sup> ) |  |
|---------------------------|------------------------------------------------------------|-------|--------|--------|--------|---------------------|--|
| (16)                      | $\alpha$ -Sm <sub>2</sub> (MoO <sub>4</sub> ) <sub>3</sub> | 7,562 | 11,509 | 11,557 | 108,98 | 951,1               |  |
| (16)                      | $\alpha$ -Dy <sub>2</sub> (MoO <sub>4</sub> ) <sub>3</sub> | 7,514 | 11,344 | 11,364 | 109,31 | 914,1               |  |
| (13)                      | $\alpha$ -La <sub>2</sub> (WO <sub>4</sub> ),              | 7,89  | 11,83  | 11,65  | 109,8  | 1023,1              |  |
| (10)                      | $\alpha$ -Nd <sub>2</sub> (WO <sub>4</sub> ) <sub>1</sub>  | 7,73  | 11,58  | 11,48  | 109,6  | 968,07              |  |
| (12)                      | $\alpha \operatorname{Pm}_{2}(WO_{4})_{3}$                 | 7,73  | 11,55  | 11,44  | 109,7  | 961,6               |  |
| (15)                      | $\alpha$ -Eu <sub>2</sub> (WO <sub>4</sub> ) <sub>3</sub>  | 7,676 | 11,463 | 11,396 | 109,63 | 944,5               |  |
| (13)                      | $\alpha - \mathrm{Gd}_2(\mathrm{WO}_4)_3$                  | 7,67  | 11,41  | 11,38  | 109,7  | 937,6               |  |
| ( <b>*</b> ) <sup>a</sup> | $\alpha - Am_2(WO_4)_3$                                    | 7,733 | 11,593 | 11,507 | 109,63 | 971,6               |  |
|                           |                                                            |       |        |        |        |                     |  |

| TABLEAU V                                        |            |
|--------------------------------------------------|------------|
| MOLYBDATES ET TUNGSTATES DE STRUCTURE & Eu-(WO.) | <b>1</b> , |

<sup>a</sup> Présent travail.

La relation existant entre les différents réseaux utilisés pour décrire cette famille de composés est schématisée sur la Figure 1 où sont projetées ces mailles selon l'axe c du réseau scheelite qui est l'axe b monoclinique.

Dans le Tableau V sont rassemblées les valeurs de paramètres de la maille monoclinique pour cette série de composés.

Les intensités sont calculées, pour le spectre Debye-Scherrer de a-Am<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub>, d'après les données positions atomiques pour a- $Eu_2(WO_4)_3$  (15), correction faite de la multiplicité et du facteur de Lorentz-polarisation; l'accord entre intensités observées et intensités calculées est très satisfaisant (facteur de confiance R = 0,10, ce qui permet de décrire cette structure comme un super-réseau scheelite avec des lacunes ordonnées dans les positions cationiques. D'après Templeton et Zalkin, un site sur trois est régulièrement vacant dans a- $Eu_2(WO_4)_3$ . L'arrangement des atomes de Am et des lacunes est donc plus simple dans le tungstate que dans le molybdate d'américium mais il provoque par contre des distorsions importantes, à la fois du tétraèdre WO<sub>4</sub> et du dodécaèdre AmO<sub>8</sub>, par rapport à la structure idéale.

## Conclusion

Le comportement de l'ion Am<sup>3+</sup> dans le molybdate et le tungstate basse température

est comparable à celui des terres rares de rayons ioniques élevés. D'après nos résultats, on peut considérer qu'il existe une relation entre les structures de tungstates et des molybdates. Ces phases ont en commun une sousmaille scheelite mais le remplacement des ions  $Ca^{2+}$  s'effectue différemment:

 $-a - Am_2(MoO_4)_3$  a une structure de base non distordue qui correspond cependant à un ordonnancement complexe des atomes d'américium et des lacunes que seule une étude sur monocristal pourrait préciser.

---A l'opposé, la sous-maille pseudoquadratique de  $\alpha$ -Am<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub> est fortement distordue, avec un arrangement atomique extrêmement simple puisqu'un site sur trois serait régulièrement vacant.

## References

- H. J. BORCHARDT ET P. E. BIERSTEDT, Appl. Phys. Lett. 8, 50 (1966).
- H. J. BORCHARDT ET P. E. BIERSTEDT, J. Appl. Phys. 38, 2057 (1967).
- 3. K. AIZU, J. Phys. Soc. Japan 27, 387 (1969).
- K. NASSAU ET J. W. SHIEVER, Nat. Bur. Stand. (U.S.) Spec. Publ. 364, "Solid State Chemistry" (July 1972).
- L. H. BRIXNER, P. E. BIERSTEDT, A. W. SLEIGHT, ET M. C. LICIS, Nat. Bur. Stand. (USA) Spec. Publ. 364, "Solid State Chemistry" (July 1972).
- R. D. SHANNON, Acta Crystallogr. A 32, 751 (1976).

- 7. W. FREUNDLICH ET M. PAGÈS, C.R. Acad. Sci. 269, 392 (1969).
- 8. P. B. JAMIESON, S. C. ABRAHAMS, ET J. L. BERNSTEIN, J. Chem. Phys. 50, 86 (1969).
- 9. W. JEITSCHKO, Acta Crystallogr. B 29, 2074 (1973).
- 10. K. NASSAU, P. B. JAMIESON, ET J. W. SHIEVER, J. Chem. Phys. Solids 30, 1225 (1969).
- 11. L. H. BRIXNER, A. W. SLEIGHT, ET M. S. LICIS, J. Solid State Chem. 5, 247 (1972).
- 12. F. WEIGEL ET V. SCHERER, Radiochem. Acta 13, 6 (1970).
- 13. K. NASSAU, H. J. LEVINSTEIN, ET G. M. LOIACONO, J. Phys. Chem. Solids 26, 1805 (1965).
- 14. L. H. BRIXNER, P. E. BIERSTEDT, A. W. SLEIGHT, ET M. S. LICIS, Mater. Res. Bull. 6, 545 (1971).
- 15. D. H. TEMPLETON, A. ZALKIN, Acta Crystallogr. 16, 762 (1963).
- 16. L. H. BRIXNER, Rev. Chim. Miner. 10, 47 (1973).